Seguidores

VideoBar

Este contenido todavía no está preparado para las conexiones cifradas.

jueves, 5 de mayo de 2011

Por qué nos ponemos pesados al ir más rápido « Círculo Escéptico Argentino

Por qué nos ponemos pesados al ir más rápido « Círculo Escéptico Argentino



A través de la Puerta Estelar ("2001: Odisea espacial")
Analizando a fondo el tema de la relatividad, podemos pasar a otro fascinante aspecto de la teoría especial: cómo los cuerpos parecen volverse más masivos a medida que se mueven más rápido.
La archiconocida fórmula einsteniana E = mc² significa que la energía de un cuerpo es igual a su masa multiplicada por el cuadrado de la velocidad de la luz. Esta energía puede liberarse por varios métodos, como la combustión o una reacción nuclear en cadena.
Ahora bien, cuando un objeto se mueve tiene más energía que la que tenía estando quieto, ya que la energía de su movimiento (energía cinética) también cuenta.* Un cuerpo en reposo no hace nada; un cuerpo que se mueve puede aplastar otro, comprimir un pistón, derribar una pared o (en el caso de un líquido) impulsar una turbina, por ejemplo.
Antes de Einstein no sabíamos de la equivalencia entre masa y energía. Pero ahora que lo sabemos, en la susodicha E = mc² podemos cambiar los términos de lugar fácilmente y poner m = E⁄c², es decir, la masa es igual a la energía dividida por la velocidad de la luz al cuadrado. Como la velocidad de la luz no varía, y la energía (E) se incrementa con la velocidad, de la fórmula parece surgir que ¡la masa del objeto aumenta cuando éste va más rápido!
Hablando con propiedad, lo que aumenta en este caso es la resistencia del objeto a cambiar su estado de movimiento (moverlo o frenarlo), es decir, su inercia. El aumento de inercia depende de la relación entre la velocidad del objeto y la de la luz. Cuanto más rápido va un objeto, más difícil es hacerlo ir más rápido.
En la todavía joven era de la exploración espacial todavía no hemos tenido este problema, ni lo tendremos por mucho tiempo. Pero supongamos que quisiéramos explorar la estrella más cercana a nosotros. Si pudiéramos ir a la mitad de la velocidad de la luz, tardaríamos casi nueve años, pero nuestra nave espacial llegaría a aumentar un 15% su inercia, con la consiguiente necesidad de cargar más combustible para acelerarla. No parece mucho pero desde ya complicaría el asunto.
Viajar requiere llevar comida y agua. Si pudiéramos ir más rápido, ahorraríamos algo de esa carga. Pero la relatividad viene a frustrarnos. A un 75% de la velocidad de la luz tardaríamos menos de seis años, pero nuestra nave aumentaría un 50% su inercia. Es verdad que ahorraríamos mucha carga, porque para los tripulantes de la nave sólo pasarían tres años y diez meses debido a la dilatación temporal.
Puestos a soñar, si lográramos ir con la nave al 90% de la velocidad de la luz, llegaríamos a destino en cuatro años y nueve meses, más o menos, que para la tripulación serían apenas dos años y unos pocos días… pero lo más probable es que no lograríamos acelerar nunca la nave, ya que ésta habría aumentado su inercia a más del doble.
Y algo más sorprendente aún. Al igual que la dilatación temporal, que sólo perciben los observadores externos, el aumento de inercia de la nave espacial no sería notado por la tripulación. En su marco de referencia los motores seguirían acelerando la nave al mismo ritmo, consumiendo la misma cantidad de combustible por unidad de tiempo.
Para entender esto conviene volver al ejemplo dado cuando hablábamos de la dilatación del tiempo. Supongamos que los tripulantes quieren medir la aceleración de su nave. Para ello miden su velocidad (por el medio que sea) y anotan el momento de la medición cuando pasan al lado de un hito, digamos (para ser coherentes con el género), una “boya espacial”. Comienzan a acelerar hacia la siguiente boya, y cuando pasan a su lado dejan de acelerar y vuelven a medir la velocidad, anotando el tiempo transcurrido desde la anterior medición. La diferencia de velocidades dividida por el tiempo es la aceleración: si pasaron de 290 000 a 291 000 kilómetros por segundo en 1000 segundos, su aceleración ha sido de (1000 km⁄s)⁄(1000 s) = 1 km⁄s², o sea, su velocidad ha aumentado a razón de un kilómetro por segundo durante cada segundo en que han acelerado (el ejemplo no es real; bajo esa aceleración los tripulantes quedarían hechos jalea en un instante).
Quienes hayan estado atentos notarán enseguida la falla. Para los tripulantes, que viajan a velocidades muy cercanas a la de la luz, el tiempo corre más lentamente. Si los observamos mientras toman sus mediciones, veremos que el tiempo que tardan en ir de un hito al otro es bastante más del que ellos perciben en su marco de referencia. Es decir, están aumentando de velocidad mucho más lentamente de lo que ellos creen.†
Desde el punto de vista de los tripulantes, y en tanto tuvieran combustible, podrían acelerar hasta tan cerca de la velocidad de la luz como quisieran. Vista desde afuera, sin embargo, la nave espacial iría acelerando cada vez menos. Para los tripulantes sería algo parecido a la carrera de la Reina Roja, de Alicia a través del espejo: tendrían que darle cada vez más gas al motor para seguir acelerando (desde el punto de vista de los demás) al mismo ritmo. Y nunca, no importa cuánto calentaran el motor, llegarían a la velocidad de la luz.
Hay muchos otros problemas relacionados, pero para mí esta simple ecuación y sus consecuencias son suficientes para convencerme de que los OVNIs no son naves extraterrestres y de que las grandes epopeyas espaciales nunca saldrán, lamentablemente, de la ficción. Pero eso ya es tema para otro artículo.
* Cuando hablamos de aumento de energía nos referimos al movimiento de un cuerpo causado por la acción de otro cuerpo. Si un cuerpo se mueve, sin ser empujado, por acción de la gravedad, el incremento de la energía cinética debido a la velocidad que adquiere queda compensado por una disminución de la energía potencial gravitatoria; la energía total no varía.
† Una aclaración a aquello de “más lentamente de lo que ellos creen”: nosotros no podemos considerarnos especiales, tampoco. En la teoría de la relatividad no hay observadores privilegiados, que puedan servir de patrón para los demás: cada uno está sujeto al espaciotiempo de su propio marco de referencia. Aquí decimos que los tripulantes de la nave espacial “creen” ciertas cosas, como si estuvieran equivocados y nosotros en lo correcto, pero la realidad es que, para ellos, somos nosotros (aquí en la Tierra) los que estamos equivocados, porque somos nosotros los que (desde su punto de vista) nos estamos alejando de ellos a velocidades relativistas.

No hay comentarios:

Publicar un comentario

Related Posts Plugin for WordPress, Blogger...